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When internal andlor inertial waves reflect from a smooth surface which is not 
plane, there is in general some energy flux which is ‘ back-reflected’ in the opposite 
direction to that of the incident energy flux (in addition to that ‘transmitted’ in 
the direction of the reflected rays), provided only that the incident wavelength 
is sufficiently large in comparison with the length scales of the reflecting surface. 
The reflected wave motion due to an incident plane wave is governed by a 
Fredholm integral equation whose kernel depends on the form of the reflecting 
surface. Some specific examples are discussed, and the special case of the ‘linear- 
ized boundary ’ is considered in detail. For an incoming plane wave incident on a 
sinusoidally varying surface of sufficiently small amplitude, in addition to the 
main reflected wave two new waves are generated whose wave-numbers are 
the sum and difference respectively of those of the surface perturbations and the 
incident wave. If the incident wave-number is the smaller, the difference wave is 
back-reflected. 

1. Introduction and summary 
Internal and inertial waves are the means by which small disturbances propa- 

gate through density-stratified fluids and homogeneous rotating fluids. Their 
fundamental properties are well known and are described in, for example, 
Phillips (1966) and Greenspan (1968). The reflexion of internal or inertial waves 
from infinite plane surfaces was first discussed in detail by Phillips (1963) 
(although it is mentioned briefly by Eckart (1960)), and the results for an inviscid 
fluid are summarized in the monograph by Greenspan (1968). Briefly, a plane 
wave incident on such a surface is reflected as another plane’wave whose crests 
make the same angle to the vertical, but opposite in sign, as those of the incident 
wave. The reflected wave-number and energy flux are modified accordingly. 

In  this paper we consider what happens when plane waves are incident on 
surfaces which are not flat. The analysis is two-dimensional (i.e. independent of 
one horizontal co-ordinate), and it is assumed that the surface is smooth, so that 
it has a tangent plane at  all p0ints.t For plane waves incident from a given 
direction we may distinguish between two types of reflecting surface (see figure I),  

t The case of two plane surfaces intersecting in a sharp corner has been discussed by 
Hurley (1970). 
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274 P. G. Baines 

namely (i) ‘flat bump ’ topography, where the incident wave ‘lights ’ or ‘sees ’ the 
entire surface and the wave characteristics all reflect off in the same direction, 
and (ii) ‘steep bump’ topography, where some of the surface is sheltered so that 
some diffraction must take place, or the wave characteristics reflect off in both 
directions. Here we shall restrict consideration to flat bumps, and except for the 
last section assume that the topography is localized, in that the surface becomes 
planar at large distances from the bump. 
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FIGURE 1 (a). ‘Flat bump’ topography, with the wave characteristics of the incident; wave 

and their reflections shown, and ( b )  ‘steep bump’ topography. 

One of the salient properties of internal/inertial waves is that, for motion of a 
single given frequency, the wave crests and energy flux vectors may only lie 
along two lines, which make equal and opposite angles with the vertical, so that 
the energy flux associated with this frequency may be in only four possible 
directions. This is a consequence of equation (2.3), and stands in contrast to 
waves which are governed by the common wave equation for non-dispersive 
waves 

where 4 is some field variable, t is time and c,, is the wave speed. For wave motion 
of this type with a given frequency the spatial structure is determined by a 
Helmholtz equation, and the energy flux may in principle be in any direction at  all. 
From these considerations we might expect the phenomena of reflexion of these 
two kinds of waves from a ‘flat ’ bumpy surface to differ along the lines indicated 
in figure 2. For the internal/inertial wave case only a ‘transmitted’ and a 
‘ back-reflected ’ wave are possible, whereas in the common case the bump acts 
as the source of a cylindrical type (for two space dimensions) scattered wave 
which is present as well as the main reflected (or transmitted, according to 
view-point) wave. For a discussion of this type of reflexion with various boundary 
conditions appropriate to e.m., sound and elastic waves the reader is referred 
to several hundred pages of Morse & Feshbach (1953). 

The plan of the paper is as follows-in §§2 and 3 the basic equations and 
assumptions are stated and a suitable analytic expression for the radiation 
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condition is derived. Applying this radiation condition in $ 4  to both the back- 
reflected and the transmitted wave and incorporating the boundary condition 
leads to a Fredholm integral equation of the second kind which determines the 
wave field. It is also shown that the solution to this equation is consistent with 
the WKBJ approximation provided that a radius of curvature may be defhed a t  
each point of the surface (i.e. the equation for the surface has a second derivative 

\ \  / 

(b) 

FIGURE 2(a) .  The reflexion of an internaI/inertial wave from a surface with a bump, 
compared with (b)  the reflexion of a non-dispersive wave from the same surface, with some 
prescribed boundary condition on #. 

at all points). In  $5 approximate solutions for two typical types of bumps are 
considered and the ‘Born’ approximation is derived. It appears that, if the 
height of the bump is comparable with its length (while still satisfying the ‘flat- 
bump’ criterion), the back reflected wave emanating from the bump may be not 
much smaller than the transmitted wave emanating from the same part of the 
surface. On the other hand, for some shapes and incident wave combinations i t  
may vanish entirely. 

18-2 
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In  5 6 it is shown that if the deviations of the surface from a flat plane are small 
in relation to the incident wavelength and the length scale of the bumps, an 
approximate solution for the wave motion may be comparatively easily obtained. 
This is the solution which would be obtained by linearizing the boundary 
condition in the usual way (e.g. as is done for surface waves). When an incident 
plane wave interacts with a single Fourier component of the bottom topography, 
two new waves with sum and difference wave-numbers are produced, to first 
order. The sum wave is always in the transmitted direction, whereas the difference 
wave is back-reflected if the incident wavelength is sufficiently long. Solutions for 
general linearized bumps may be readily obtained by Fourier superposition, and 
if one should wish to obtain the reflected motion for an arbitrary piece of bottom 
topography, the best procedure may be to solve the integral equation for the 
large bumps and then use the linearized approximation for the small ones. 

Concerning the radiation condition, it should be noted that it is not satisfied by 
the work of Barcilon & Bleistein ( 1 9 6 9 ~ ~  b )  where they considered the reflexion 
and diffraction of inertial waves from cylinders. Of the infinity of possible 
solutions which satisfy the surface boundary conditions, theirs are the ones which 
give no back-reflected wave motion, in the sense described above, and do not 
constitute the reflexion/diffraction pattern due to a single incident plane wave, 
as purported. The radiation condition is also not satisfied by the flow envisaged 
by Longuet-Higgins (1969) in his calculations of reflexion and transmission 
coefficients for various rough surfaces on a geometrical basis, and consequently 
these coefficients must also be invalid, aside from any considerations of sharp 
corners, viscous boundary layers and the like. 

Throughout this paper the terms ‘surface’ and ‘bottom topography’ are used 
interchangeably because this work has been done with potential applications 
to the ocean in mind. Furthermore, corresponding results to those obtained here 
may be inferred for the case of a horizontal channel, where the fluid has a rigid 
upper boundary. 

2. Basic equations 
We consider the motion of an incompressible inviscid rotating stratified fluid, 

and take Cartesian axes x, y, z, z increasing vertically upward, with corresponding 
velocity components u, w, w. We take the axis of rotation to be vertical, and the 
linearized equations of motion in the rotating frame a.re 

all 1 Pgf - + f x u = - -  
at Po@) vp - Po0 ,’I 

1 0.u = 0, 

where p,(z) is the equilibrium density, p and p are the perturbation pressure and 
density respectively, 2 is the unit vector in the direction of z increasing, t is the 
time variable, u is the fluid velocity, g the acceleration due to gravity, and 
f = f P = 2 8  where 8 is the angular velocity of the system. We next assume that 
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the bottom topography and the incident wave motion are independent of the 
y co-ordinate, so that we may defke a stream function $(x, z, t )  by the equations 

u = -a$lax,  w = al/rjax. (2.2) 

(2.3) 

Equations (2.1) then yield the equation for @ 

a2v2$lat2 + NZ@$, + f 2 $ z z  = 0, 

where N is the Brunt-Viiisala frequency defined by 

If we further assume that all the fluid motion has the time dependence e-iwt, then 
writing 

we obtain 

where the suffices denote derivatives. In  order to have internal and/or inertial 
waves we require c2 > 0, and for the sake of definiteness we will take 

0 < f < w < N ,  

which is the case of greatest relevance for the ocean. We also assume that N2 is 
constant. The conclusions of the following theory will still be valid in cases where 
N 2 ( z )  is not constant, however, provided only that N 2  be effectively constant in 
the regions of the fluid near the bottom topography. With N 2  constant, c2 is 
constant and (2.6) has the general solution 

(2.7) $ = f (a + g f r ) ,  

where f and g are arbitrary complex-valued functions of the real characteristic 
variables f ;  = z+cx ,  7 = z-ex. 

We consider fluids of effectively infinite depth with a bottom surface or 
topography which has the equation 

z = h(x), (2.8) 

where h(x) is a differentiable function everywhere so that the bottom is smooth, 
Ih'(z)] < c so that the condition for 'flat' bumps is satisfied, and 

-a3 
h'(z)+OLL as x-t 

aR +a' 

where aL, aR are constants, so that the bottom topography variations are 
localized. This latter assumption is not crucial for the theory, and is made for the 
sake of simp1icity.t The condition for 'flat ' bumps implies that there is a one-one 
correspondence between the ( characteristics and the 7 characteristics, so (2.8) 
may be written in either of the two forms 

( = --mI), 7 = --Wl (2.10) 

t There is no real point in treating infinite sinusoidal bottom topography here, as such 
topography is not commonly met with in nature and further, Fourier superposition is not 
possible, since we are not restricting consideration to small bumps. See 0 6. 
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where the functions H ,  K are defined by (2.8) and will be monotonically in- 
creasing functions of their arguments. The boundary condition to be satisfied on 
this bottom surface is $ = 0. (2.11) 

We next consider a plane internal/inertial wave incident on this bottom 
topography, which we denote as 

$d = 6 exp [i(k,< - w t ) ] ,  (2.12) 

where E denotes the amplitude, sufficiently small so as to make the linearization 
of the basic equations valid throughout the following analysis. This has phase- 
propagation in the direction of increasing < with a downward group velocity 
(along the lines of constant 6) .  A solution which satisfies the boundary conditions 
and appears at first sight to be the reflected wave due to ki is 

kIT = -sexp[-i(k1K(7)+ot)], (2.13) 

so that +i+$T = 0 

on the surface [ = -K(v) .  Since K(7)  is monotonically increasing with 7, the 
motion denoted by $T has phase propagation in the direction of 7 decreasing. 
This suggests that the energy flux associated with the motion above is outward 
away from the boundary, by analogy with plane waves. However, if one ex- 
presses in terms of its Fourier integral of plane waves, one finds that, for 
almost every function K(y)  which satisfies the above conditions, $T contains 
some plane waves with their phase propagation in the reversed direction (as the 
reader may readily see by inspecting the examples considered in 95). This 
implies in turn that the group velocity of these plane waves is directed downward, 
signifying that $T contains some incoming energy from infinity (Lighthill 1965). 
The solution $i+$pr, as expressed by equations (2.13) and (2.12), is a possible 
field of motion but it is not the motion generated by the single incoming wave 
$i; some other additional sources of energy at infinity are required to create it. 
In  order to determine the field of motion due to a single incoming plane wave we 
need to employ the appropriate radiation condition, and this is outlined in the 
next section. 

3. The radiation condition 
We consider a field of wave motion of a single frequency which is a function of 

one characteristic variable only, e.g. 

$ = P ( ~ ) e - ~ ” t ,  (3.1) 

and seek a general condition of F(7) which implies that the energy flux associated 
with this wave field be in one direction only. F(7)  may be written 

+&/om exp [ i k ~ ] d k / ~  -m F(7’)exp [-iky’]dy’, (3.2) 



Refexion of internallinertial waves 279 

which is effectively its Fourier integral representation. The first term consists of 
waves of the form exp [ - i(ky + wt) ] ,  which have their group velocity directed 
upward and to the right, while the second term consists of waves of the form 
exp [i(ky - wt)] ,  with group velocity directed downward and to the left. Now it 
has been shown by Lighthill (1965, 1967) that, for a periodic source of wave 
motion in a rotating stratified fluid the physically relevant solution is composed of 
plane waves whose group velocity is directed away from the source. No plane 
waves with incoming group velocity may be present unless an additional appro- 
priate source is specified. A n  initial-value problem by Baines (1969) further 
demonstrates the validity of this result for the corresponding case of internal 
wave motion in a horizontal channel. Accordingly, if we require that the motion 
represented by (3.1) have no energy source at infinity ‘upward and to the right’, 
so that it contains only constituent plane waves of the form exp [ - i(ky + wt) ] ,  
then it is necessary and sufficient that P(y) satisfy 

(3.3) 

Reversing the order of integration then yields 

P(r)  = $1” -co Pn ‘ )dT jW -m K,(W exp [%3‘-9)ldk, (3.4) 

where H,,(k) is Heaviside’s step function, whose Fourier transform (Lighthill 
1958, p. 43) yields 

Hence (3.4) becomes 

(3.6) 

where P denotes that the principal value of the integral is to be taken. This is the 
required expression for the radiation condition. If it were specified instead that 
the energy flux be in the opposite direction, then the sign in front of the integral 
in (3.6) would be reversed. 

This radiation condition is equivalent to that used by Cox & Sandstrom (1 962) 
in their study of the generation of internal tides. Solutions subsequently presented 
by Sandstrom (1966) for a horizontal channel do not, however, satisfy this 
radiation condition and have the same characteristics as the motion described by 
equation (2.13). Thiswork has been criticized by Baines (1 969), where the equation 
corresponding to equation (3.6) here is derived for a horizontal channel. Other 
studies by Rattray, Dworski & Kovala (1969), Larsen (1969) and Robinson 
(1969) employ the correct radiation condition. 

Longuet-Higgins (1969), following the work of Sandstrom (1966), has calcu- 
lated the reflexion and transmission coefficients for a plane wave incident on 
periodic bottom topography of saw-tooth, square-wave and sinusoidal type, on a 
geometrical basis centred around the direction of reflexion of the wave charac- 
teristics from the surface. For the case of ‘flat ’ bumps considered in the present 
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paper, such transmission coefficients calculated in this way would always be 
unity, and the reflexion coefficients zero. However, as is shown below, the 
reflexion coefficient for flat bumps is in general non-zero, and may in fact be 
quite considerable. It therefore seems obvious that this simple basis is inadequate 
in general for the calculation of reflexion and transmission coefficients, to say 
nothing of the ‘steep’ bump case where the effects of diffraction must be 
considered. 

Barcilon & Bleistein (1969a,b) in an approach which is apparently quite 
independent of that of any of the authors mentioned above, have investigated the 
reflexion and diffraction of inertial waves from a semi-infinite flat strip and 
smooth convex cylinders in general. However, with the exception of the work on a 
flat strip, the functions used to construct the solutions for the reflected and dif- 
fracted waves do not satisfy the radiation condition when expressed in terms of 
plane waves, even though their phase propagation is in the same direction at  
each point. Their solutions are in fact analogous to (2.13) of the previous seetion. 
Consequently these solutions must be incorrect, in that they do not represent the 
diffracted wave pattern due to a single incident plane wave.? 

4. The integral equation and some general results 
Using the radiation condition derived in the previous section, we now derive 

an equation which governs the reflected wave field from the ‘flat’ bump bottom 
topography. To this end we write 

(4.1) 

(see figure 2 (a ) ) ,  where Fl(q) and F2(t) are complex-valued functions. The most 
general wave field possible is @ = $$ + $T + $R, and on the boundary 

I $i = B exp [i(kl< - wt) ]  

$T = - eF1(q) exp [ - i w t ] ,  

$R = eF2(t) exp [ - i w t ] ,  

the incoming wave, 

the reflected wave, 

the transmitted wave, 

t = -&7), or q = - H ( t ) ,  (4.2) 

when (4.2) holds. The radiation condition (3.6) applied to each of $T and $R 

separately yields 

-O0 7‘-7 ’ (4.4) 

The four equations (4.2)-(4.5) constitute a closed set which we wish to solve for 
the functions Fl(q), F2(t). 

t They may, however, be valid in the ‘geometrical optics’ (very high incident wave- 
number) limit (see § 4) .  
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where 5 and 7 are related by (4.2), then (4.5) becomes 

281 

Also, if we substitute E,(y) from (4.3) in (4.4) utilizing (4.2), (4.6), we obtain 

(4.8) 
If  we define 

then adding (4.7) and (4.8) yields 

This is the basic integral equation which must be solved in order to determine 
the wave motion, and is a Fredholm equation of the second kind. The kernel is 
non-singular since K(y ) is assumed to be differentiable, the principal-value 
singularity in (4.7) and (4.8) having been subtracted out. If we assume that 
1/2ni is not an eigenvalue of (4.10), there will be a unique solution for F z ( ~ ) ,  and 
we shall proceed on this assumption. F,(q), F2(2(5) will then be given by 

(4.11) 

The kernel in (4.10) depends solely on the bottom topography, while the 
function G(q) depends on the bottom topography and the incident wave-number 
k,. G(7) will vanish if the function exp [ - ik,K(7)] satisfies (3.6), which in general 
it will not, as the reader may readily verify. F2([) = F z ( ~ ) ,  as determined from 
(4.10), (4.11) is a ‘back-reflected’ wave whose energy flux is in the opposite 
direction t o  that associated with the incoming plane wave. It also gives the 
correction to the function exp [ - ikl .K(y)]  for the onward-transmitted wave. 
This back-reflected wave is perhaps the most significant feature of the present 
analysis (it is absent from the theory of Barcilon & Bleistein), and it is not 
detected by ‘ray-theory’ based on the WKB approximation (e.g. Keller & Mow 
1969). 

Before considering the possibilities of solving (4.10), it is instructive to consider 
the behaviour of G(7)  as k, becomes very large, implying that the incident wave- 
length is much less than length scales associated with the bottom topography. 
Utilizing (4.2) we may write 

1 -w?) = exp [-ik,K(T)l+9&?), 
= 9 z [ - - m O l .  

9 (4.12) 
i Sm exp [ ik ,c ]E(c)dc  

2n --OD H ( c ) - H ( g )  G(7)  = 9(c) = -+exp[ik,[]-- P - 

where H’(c) = dH/dt. Furthermore, 

(4.13) 
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as may be seen from the Plemelj formulae of complex analysis (see, for example, 
Carrier, Krook & Pearson 1966), or the Fourier transform of 1 / (F  - [) considered 
as a generalized function (Lighthill 1958). Hence we have 

For present purposes we assume that the bottom topography h(x) be twice 
differentiable. It follows that the functions H ( [ ) ,  K(p)  are also twice differentiable, 
and (2.9) implies 

where 

(4.15) 

(4.16) 

There are three significant ways in which we may consider the limit kl+ 00. 

First, we may keep e = constant, so that the amplitudes of the stream function 
and the pressure fluctuations (as may be seen from equations (2.1)) will be 
constant. The amplitudes of the fluid velocity and the fluid particle displace- 
ments, proportional to kle,  will become very large in this case, as will the incident 
energy flux [*I, being proportional to kls2. Second, we may keep kle  constant, 
and third, kle2. Each of these limits will have its own physical relevance. 

In  order to observe the behaviour of 9([), $’(g) as kl+m, it is only necessary to 
observe that the functions 

are everywhere bounded and continuous functions of [, C, by virtue of the 
existence of the second derivative of H(E), and that they are both 

function of [ 
6 ‘2  as I[’)-+m. 

Hence both functions are absolutely integrable and by the Riemann-Lebesgue 
theorem lim $([), 9 ‘ ( g )  = 0. 

kl+w 
(4.17) 

It then follows directly that F2([) = TZ(q)  (as the solution of (4.10)) and its 
derivative will similarly vanish in this limit, and its asymptotic form will in 
general be dependent on the nature of the bottom topography function K(q). 

The amplitudes of the stream function, velocity and energy flux associated 
with the back-reflected wave PR are O(elF2([)l), O(elPh([)[) and O(s21F2([)Fh(()[) 
respectively, and each of these quantities will vanish as kl+m in any of the three 
ways mentioned above. Furthermore, the ratios of their magnitudes relative to 
the magnitudes of the corresponding quantities in the incident wave will also 
vanish, in each of the three 1imits.t 

7 If there are some points on the topography where H’( l )  exists but H”(l )  does not, 
g(E) will still vanish in the limit k, 3 0 3  but g’(t) may not. The nature of the limit will 
depend on the local behaviour of H(5).  
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Hence, in every sense, the back-reflected wave vanishes when k,  becomes 
large-the incident wave feels the bottom to be locally plane, and reflects as a 
local plane wave. These results are therefore consistent with the WKB approxi- 
mation. 

The formal limit k,+O is not without interest but its consideration will be 
discussed elsewhere because it has ramifications which are beyond the scope of 
the present work. One may, however, make the fairly obvious remark that if one 
regards the incident wave (specified by k,, 8 and a) as fixed and decreases the 
horizontal length scale of the bottom topography (bearing in mind that its slope 
is limited by the ‘flat bump’ criterion), the back-reflected wave must vanish as 
the surface approaches a flat plane. 

These results suggest that for a given incident wave and bottom topography 
satisfying the ‘flat bump’ and smoothness criteria specified above, the back- 
reflected wave is only significant if the horizontal scale of the bottom variations 
is O ( h ) ,  where h = (2n/k,c) (1 +c2)4, the horizontal wavelength of the incident 
wave. 

5. Solutions for special cases 
As readers familiar with integral equations will know there is no suitable, 

universally applicable method available for solving equation (4. lo), unless the 
kernel happens to have some simple form (for a discussion of the general theory 
see, for example, Morse & Feshbach (1953, ch. 8)). Usually one must resort to 
approximate methods in order to solve specific problems. In  this section two 
examples are studied with the purpose of illustrating the features of the reflexion 
process and determining numerical magnitudes. Two approximate methods are 
used which may be applicable to a wide class of topographies. 

Example 1 

Remembering that the topography may be represented by an equation of the 
form = - K(y), we take 

2da2 
K(?) = ?+- r2+a2’ (5.1) 

and the topography represented by this equation is shown in figure 3. It may 
easily be seen that the condition for this bump to be a ‘flat bump’, i.e. Ih’(x)I < c, 
is 
With K(7) given by (5.1), 

Idla1 < 41343. ( 5 . 2 )  

(5 .3 )  

and it is readily verified that the condition for this quantity to be always positive 
is, again, equation (5.2). Hence (4.10) becomes 
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Expanding the logarithm and integrating term by term yields 

n cn,ym(2a2d)n +..., (5 .5)  + -jJ- _____ 
m = ~  (y2+a2)n 

where the c,,L)s are constants, the first five being given by 

d=F2(y’) dy’ 

The series (5.5) will converge provided the inequality (5.2) is satisfied. 

(6) (4 
FIGURE 3. Form of tho bottom topography for example 1. (a) d > 0, ( b )  d < 0. 

The next step is to  evaluate the function C(y). From equation (4.9) and the 
Plemelj formulae of complex analysis, G(y) may be expressed as 

* exp [ - ik, K(7‘)7 - lim - dy’, J - r)‘-zo 
- _  

z o + , + 2 ~ %  -m 

where xo + y + implies that zo + y but always with a positive imaginary part. 

1 OD exp[-ik,y‘] 
~ ( 7 )  = - lim ;J exp [- ik ,2a2d/(~’2+a2)]dy’ .  (5.9) 

ao-+i+ 2 7 ~ ~  -m Y ’ - x ~  

The integrand of the complex y’ plane is single-valued and exponentially small in 
the lower half-plane, but is complicated by the essential singularity at  y‘ = - ia 
(see figure 4). However, we may expand the exponential term in its power series, 
obtaining 

and integrate term by term. Closing the contour in the lower half-plane shows that 
the f i s t  term is zero, so that 

k,da2Jm exp [ - ik ,y ’ ]  dy’ 
G(q) = lim - 

e,+v+ n --oo w2 + a2) (9‘ - 2 0 )  
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This series will converge for all values of k,d by virtue of the factorial sum in the 
denominator, so that any desired accuracy may be obtained by taking a sufficient 
number of terms. If k,d > 1 several terms must be taken, and this would be a 
laborious process, so we will assume k,d < 1 and be satisfied with the first one or 
two terms. Evaluating the residues at  q = - ia and then taking the simple limit 
z,,+ q + yields 

a(7 - ia) 
r2 + a2 

k,da(q - ia) 
q2 + a2 

G(q)  = - k,dexp [ - k,a] - [ 1 - ik ,d( l  + k,a) + 
(5.12) 

neglecting terms of order (k,d)3.  However, these neglected terms show a similar 
shape and form to those retained, and therefore their inclusion, even if they were 
important, should not alter the character of G(7) very much. 

FIGVRE 4. The complex q’ plane for G(7)  

From (5.5), (5.6) and (5.12) we may now obtain an approximate solution for 
Fz(q). The higher-order terms of the series (5.5) are essentially of order (d/a)n. 
One may terminate the series to the accuracy required, and then substitute for 
F2(7) in the expressions (5.6) for the appropriate constants c,, obtaining a set 
of linear equations which may be solved for these coefficients. For the purpose of 
illustrating the character of the solution we truncate the series for F2(q) at the 
second term and write 

9 - 2 ( 7 ? )  = Gh)+ 2a24c10+ 7+- C l l 7 )  9 (5.13) 

where G(7)  is given by (5.12). Equation (5.6) then yields 

(5.14) I k,dexp[-k,a] 
8a( 1 f ( d / 4 ~ ) ~ )  

ik,dexp [ -k la]  
‘11 = 8a2( 1 + (ci/4a)2) 

[ 1 + (id/4a)] (1 - ik,d($ + k,a)), Cl0 = - 

[ 1 - ( i d / 4 a ) ] ( 1 - i k l d ( $ + k , a ) ) ,  

and from (5.13) we have 
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where 
(1 - ik,d( 8 + kla)) 

c1 = -k,dexp[-k 1-ikld(l+kla)-(d/a)2 1 6 ( l + ( d m ] ’  1 
(5.16) 

This expression will be a good approximation to F2(q) provided kld < 1, 
d/a < 1, and indeed a simpler approximation for this case would be 

(5.17) 

We may notice several things about this solution. First, the back-reflected 
wave F2(c) and the correction gZ(7)  to exp [ - ik1K(7)] for the onward trans- 
mitted wave Fl(7) have magnitudes which resemble the shape of the bump 
(although the wave is somewhat broader than the bump, behaving like 7 / ( r 2  + a2) 
for 7 large rather than l/(72+a2)). Second, the leading term in the expression 
for F2(g) exp [ - iwt] (equation (5.17)) has phase propagation in the direction of 5 
decreasing, as might be expected, and has the form of a single (i.e. ‘one-wave- 
length’) wave, characteristic of the bump or bottom topography, with a ‘wave- 
length’ of order a. Also, the leading term for Y2(y)  exp [ - iwt] (again equation 
(5.17)) has phase propagation in the direction appropriate for incoming plane 
waves,? and this, one may expect, is present in order to partly cancel out the 
incoming part of exp [ - ik,K(y)] exp [ - iwt]. Third, the above equations 
indicate that the back-reflected wave energy will be a maximum when kld, 
kla = O ( l ) ,  and that it may be a significant proportion of the energy incident on 
the bump (e.g. 10-20 %). 

Example 2 

From the classical Neumann theory of integral equations, the general solution of 
(4.10) has the form 

The convergence of this series suggests that a good approximate solution is 

This is equivalent to the Born approximation of classical scattering theory 
(or perhaps, more accurately, the Kirchoff approximation since this is a surface 

t This may be seen by expressing F2(?j) exp [ - iwt] in the form r exp [i($- wt) ] ,  using 
(5.17). 
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scatterer (see Morse & Feshbach 1953, vol. 11, Q 9.2) ; however we will refer to it as 
the Born approximation here). The accuracy of this procedure will depend in 
general on the topography involved, and the extra accuracy gained by including 
the next term in the series may be gauged by estimating its magnitude directly. 
Evaluating these integrals will not, however, be a simple process for most 
topographies. 

As an illustration of this procedure we consider the bottom topography 

(5.21) 
represented by K(r]) = r] - (2&/7r) arctan r]/a. 

This represents a smooth change in depth from one horizontal plane to another, 
with a difference d in depth. The necessary condition for the topography to 
satisfy the flat bump criterion is 

Id/.] < in, (5.22) 

and the topography is illustrated in figure 5. The function G(r]) will then be given 
bv 

dr]’, (5.23) 

= -  (5.24) 

using the properties of the arctan function. 

(4 (b) 

FIGURE 5. Form of the bottom topography for example 2. (a)  d > 0, (a) d c 0. 

If d < 0 (down-sloping topography), after some manipulation this may be 
written as 

G(r]) = -sinynexp[-kla] (5.25) 

where y = k,ldl/n. It is interesting to note that G(r]) vanishes when y is an integer, 
implying that F,($), 2F2(q) vanish for these cases and 

is the appropriate onward-transmitted wave. Also, G(q) is an integral over y of 
terms of the form 

(cf. (5.17)), which have their phase propagation in the opposite direction to that 
of outward-going plane waves. 
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When d > 0 (upward-sloping topography) and y is an integer, G(7) does not 
vanish but may be evaluated directly from equation (5.24) by closing the con- 
tour in the lower half-plane. For k,d = 7~ we obtain 

7 - i a  
G(7) = - 2ia exp [ - k,a] ___ 

7 2 +  a2’ 
(5.26) 

for allvaluesof a. This term againrepresents the same phase-propagation as (5.17). 
The Born approximation for this case is given by 

2darctan [a($ - y)/(qy’ +a”] 
4 7 ’  - 7)  

(5.27) 

The analytic evaluation of this second integral, even in this simple case, appears 
to be very difficult. However, it seems fairly clear from the nature of the first term, 
G(T),  that the broad features of the solution will be much the same as those of 
example 1, the only major difference being the vanishing (and corresponding 
oscillation in intensity) of the back-reflected wave for some values of k, d for the 
down-sloping case. 

6. The linearized boundary condition 
There is one class of topographies where good approximations in general may 

be obtained for the reflected waves with considerably less effort than is required 
above, and this is the case where the bottom topography variations may be 
regarded as small perturbations of a plane surface. Using the condition that the 
component of fluid velocity normal to the actual surface must vanish a7t the 
boundary, one may regard the interaction between the flow which would be 
present without the boundary perturbations with the perturbations themselves 
as a new source of fluid motion, situated on the plane surface. This will generate 
internal waves which must satisfy the radiation condition. This has been done by 
Cox & Sandstrom (1962) and Hendershott (1966)) who considered long surface 
waves interacting with bottom topography to generate internal waves. For the 
problem under consideration here, namely the interaction of internal waves with 
bottom topography to generate more internal waves, we shall start with the 
integral equation of $4, which is a more systematic procedure than the direct 
approach described above, although they both give the same results. 

Let the bottom topography have the equation 

(6.1) 
where 

a is the shortest horizontal length scale of the variation of f (x ) .  In  the character- 
istic variables (6.1) has the form 

where L(7) may be expressed 
t = -[(c+-a)/(c--) lr--(r) ,  (6.3) 

2c 1 
L(7) = - raf (2) [ 1 + c--cI. --.f (2) c--a + O ( 4 ,  
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so that L(q) = O(d)  (c / (c  - a)  is assumed not to be large). From (4.10) the function 

where (equation (5.8)) 

dy‘. (6.6) 
1 exp [ - ik,( (c + a) / (c  - CC))~’] exp [ - ik,L(y’)] ~ ( 7 )  = - lim 7j 

z,-y+ 277% -m T’ - 2 0  

We now make a second assumption, namely that 

A = k,d < 1, (6.7) 

which together with S = &/a < 1 implies that the normal scale (i.e. normal to the 
plane) of the bottom topography variations is much less than the incident 
wavelength and the tangential length scale. We also assume that A N 6. Since 
k,L(q) = O(A) we have 

so that 
exp [ - ik,L(q’)] = 1 - iklL(qf) - $(~ ,L (Y’ ) )~+ O(A3), (6.8) 

1 exp [ - i k , ( ( c+a) / ( c -a ) )~ ’ ]k ,L (~ ’ )dq ’  -. ~ ( 7 )  = lim -1 
zo-Wl+2n --m 7’ -20 

W2) (6.9) 

It is readily shown that the maximum value of [L(q’) - L(7)]/(qf - 7) anywhere 
is IdL/dy l ,  SO that 

(6.10) 

for all q‘, q. Expanding the logarithm in (6.5) and integrating by parts then yields 

and to second order in A, S we have 

In fact, to calculate g 2 ( q )  to first order, only the first term in (6.9) is required, 
and successive higher-order approximations may be readily obtained if desired. 

We now investigate the reflexion from a sinusoidal bump of the form 

f(x) = d c o s h ,  Id 4 1. (6.13) 

(For this case the solution for any acceptable function f(x) may be obtained by 
Fourier superposition of the results for its Fourier components.) From (6.4) we 

(6.14) 
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and thence from (6.9) 

G(7)  = O+O(A2) ( I  < k , ( c+a) ) ,  

ir (I-k,(c+a)) +O(A2) ( I  > k,(c+a)),  (6.15) 

which is also the form of 2F2(7) to first order in A, 6. From equations (4.11), 
(6.12) we finally have 

1 ick, d - - --exp [- 
C - a  C - a  

4(<) = 0 + O(A2, As), 

I < k,(c + a): i + w ( e x p  C - E  [ -*(k,(c+a)+~)] C - a  

(k , (c  +a) - I )  + O(A2, s2), I) 
I > k,(c+a). 

(6.16) 

The second-order part of the exp [ - i((c + a ) / ( c  - a)) k,~] term has been included 
because it is needed in order to calculate the energy flux to the lowest order. The 
instantaneous energy flux across any surface S is given by 

IPU.  d S ,  

and for a plane wave given by 

9 = eexp [ i (k15-wt ) ] ,  5 = i- [ or 7, 

the time-averaged energy flux (per unit area) is given by 

E,, = e2lc1po[(l/w) ( W 2 - p )  (N2- w 2 ) ] 4  (6.17) 

in the appropriate direction. The back-reflected energy flux is then 

= o  
to second order in A, 6. 

A single plane wave incident on a sinall amplitude sinusoidal bottom therefore 
produces, in addition to the basic wave reflected from the plane surface, two new 
waves whose wave-numbers are the sum and difference of those of the reflected 
(or incident, as appropriate) waveand the bottom topography, projected in the ap- 
propriate characteristic direction. The 'sum ' wave is always onward-transmitted, 
whereas the ' difference ' wave is back-reflected when the incident wavelength is 
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longer than that of the (projected) bottom topography. At the changeover point, 
I = k,(c + a), this ‘difference’ wave has infinite wavelength and the energy flux 
associated with it vanishes. The back-reflected wavelength tends to be long, and 
is always longer than the projected wavelength of the sinusoidal bottom. The 
back-reflected wave is not wholly absent when 1 < k , ( c+a) ,  as it appears for 
smaller 1 at higher orders. For example, at  second order in A for $the change-over 

occurs a t  I = * k l ( c + a ) .  (6.19) 

It isinteresting also to note that the back-reflected energy flux is proportional to 
k,d . ld = AS, which increases with d as d2, indicating that this linearized theory, 
although instructive and quite possibly very useful, is really on the fringes of the 
phenomenon. 
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